8 research outputs found

    Accurate staging of reproduction development in Cadenza wheat by non-destructive spike analysis

    Get PDF
    © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. Wheat is one of the most important crops in the world; however, loss of genetic variability and abiotic stress caused by variable climatic conditions threaten future productivity. Reproduction is critical for wheat yield; however, pollen development is amongst the developmental stages most sensitive to stresses such as heat, cold, or drought. A better understanding of how anther and pollen development is regulated is needed to help produce more resilient crops and ensure future yield increases. However, in cereals such as wheat, barley, and rice, flowers form within the developing pseudostem and therefore accurate staging of floral materials is extremely challenging. This makes detailed phenotypic and molecular analysis of floral development very difficult, particularly when limited plant material is available, for example with mutant or transgenic lines. Here we present an accurate approach to overcome this problem, by non-destructive staging of reproduction development in Cadenza, the widely used spring wheat research variety. This uses a double-scale system whereby anther and pollen development can be predicted in relation to spike size and spike position within the pseudostem. This system provides an easy, reproducible method that facilitates accurate sampling and analysis of floral materials, to enable anther and pollen developmental research

    Knockdown of Arabidopsis ROOT UVB SENSITIVE4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium

    Get PDF
    ROOT UV-B SENSITIVE4 (RUS4) encodes a protein with no known function that contains a conserved Domain of Unknown Function 647 (DUF647). The DUF647-containing proteins RUS1 and RUS2 have previously been associated with root UV-B-sensing pathway that plays a major role in Arabidopsis early seedling morphogenesis and development. Here, we show that RUS4 knockdown Arabidopsis plants, referred to as amiR-RUS4, were severely reduced in male fertility with indehiscent anthers. Light microscopy of anther sections revealed a significantly reduced secondary wall thickening in the endothecium of amiR-RUS4 anthers. We further show that transcript abundance of the NAC domain genes NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and NST2, which have been shown to regulate the secondary cell wall thickenings in the anther endothecium, were dramatically reduced in the amiR-RUS4 floral buds. Expression of the secondary cell wall-associated MYB transcription factor genes MYB103 and MYB85 were also strongly reduced in floral buds of the amiR-RUS4 plants. Overexpression of RUS4 led to increased secondary thickening in the endothecium. However, the rus4-2 mutant exhibited no obvious phenotype. Promoter-GUS analysis revealed that RUS4 promoter was highly active in the anthers, supporting its role in anther development. Taken together, these results suggest that RUS4, probably functions redundantly with other genes, may play an important role in the secondary thickening formation in the anther endothecium by indirectly affecting the expression of secondary cell wall biosynthetic genes

    Barley TAPETAL DEVELOPMENT and FUNCTION1 (HvTDF1) gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants

    Get PDF
    •The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley.•Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics.•Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots.•This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration

    Sporophytic control of pollen meiotic progression is mediated by tapetum expression of AMS

    Get PDF
    Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development. We conducted a detailed investigation of chromosome behaviour, cytokinesis, radial microtubule array (RMA) organization, and callose formation in the ams mutant. Early meiosis initiates normally in ams, shows delayed progression after the pachytene stage, and then fails during late meiosis, with disorganized RMA, defective cytokinesis, abnormal callose formation, and microspore degeneration, alongside abnormal tapetum development. Here, we show that selected meiosis-associated genes are directly repressed by AMS, and that AMS is essential for late meiosis progression. Our findings indicate that AMS has a dual function in tapetum-meiocyte crosstalk by playing an important regulatory role during late meiosis, in addition to its previously characterized role in pollen wall formation. AMS is critical for RMA organization, callose deposition, and therefore cytokinesis, and is involved in the crosstalk between the gametophyte and sporophytic tissues, which enables synchronous development of tapetum and microspores. The tapetum transcription factor ABORTED MICROSPORES is key to tapetum-meiocyte crosstalk by enabling late meiosis progression, cytokinesis, radial microtubule array organization, and callose deposition

    Meiosis and beyond – understanding the mechanistic and evolutionary processes shaping the germline genome

    Get PDF
    The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro‐evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post‐meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge

    Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2

    No full text
    AUXIN RESISTANCE4 (AXR4) regulates the trafficking of auxin influx carrier AUXIN1 (AUX1), a plasma-membrane protein that predominantly localizes to the endoplasmic reticulum (ER) in the absence of AXR4. In Arabidopsis (Arabidopsis thaliana), AUX1 is a member of a small multigene family comprising 4 highly conserved genes—AUX1, LIKE-AUX1 (LAX1), LAX2, and LAX3. We report here that LAX2 also requires AXR4 for correct localization to the plasma membrane. AXR4 is a plant-specific protein and contains a weakly conserved α/β hydrolase fold domain that is found in several classes of lipid hydrolases and transferases. We have previously proposed that AXR4 may either act as (i) a post-translational modifying enzyme through its α/β hydrolase fold domain or (ii) an ER accessory protein, which is a special class of ER protein that regulates targeting of their cognate partner proteins. Here, we show that AXR4 is unlikely to act as a post-translational modifying enzyme as mutations in several highly conserved amino acids in the α/β hydrolase fold domain can be tolerated and active site residues are missing. We also show that AUX1 and AXR4 physically interact with each other and that AXR4 reduces aggregation of AUX1 in a dose-dependent fashion. Our results suggest that AXR4 acts as an ER accessory protein. A better understanding of AXR4-mediated trafficking of auxin transporters in crop plants will be crucial for improving root traits (designer roots) for better acquisition of water and nutrients for sustainable and resilient agriculture
    corecore